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Abstract

Density functional theory (DFT) offers computationally affordable way of describing static and dynamic properties

of superfluid 4He. In general, the DFT models yield single particle-like Schr€odinger equations with a nonlinear potential

term that accounts for all the many-body interactions. The resulting equations can be solved for small amplitude plane

wave excitations in the bulk whereas fully numerical solution must be sought in more complicated cases. In this paper

we propose a numerical method that can be used in solving the time-dependent nonlinear Schr€odinger equation in both

real and imaginary times. The method is based on operator splitting technique where each component operator is

treated with a unitary semi-implicit Crank–Nicolson scheme. In order to increase the stability of the method for

complex valued nonlinear potentials, a predict–correct scheme is employed in the simulations. The numerical calcu-

lations indicate that the scheme is numerically sufficiently stable and well behaving, exhibits high degree of parallelism,

and produces results in agreement with the existing numerical data. In the numerical examples we apply the method to

obtain dispersion relation of the bulk liquid and to calculate solvation and absorption spectrum of atomic boron

solvated in superfluid helium.
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1. Introduction

Superfluid 4He at 0 K constitutes a high-dimensional quantum system that follows Bose statistics. The

large zero-point amplitude of the atoms efficiently overcomes the weak He–He binding and therefore the
system behaves purely quantum mechanically. Elementary excitations of the bulk liquid are known by both

experiments [1–3] and theory [4], although in the latter case the analytic treatments can only be carried out

approximately. The neutron scattering experiments gave the form for very unusual dispersion relation,

which has both positive and negative slopes. Approximate analytic treatment of Feynman and Cohen [4]
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was able to reproduce the shape of the dispersion curve and rationalize the nature of excitations (i.e.,

phonons and rotons). When the liquid density profiles differ significantly from the constant bulk behavior,

the situation becomes more complicated and most often numerical calculations are the only way to proceed.

Two separate branches of methods have been developed to solve the high dimensional quantum problem:

quantum Monte Carlo (QMC) and density functional theory (DFT). QMC aims at direct random sampling

of the high dimensional n-particle space and most of its variants are asymptotically exact with respect to

simulation time. Some QMC methods have also been extended to describe excited states and therefore it

can also describe liquid at finite temperatures. The main drawback of the QMC is that it can only yield
stationary solutions with respect to time or at most dynamics in imaginary time. Another approach based

on DFT relies on existence of a dimension reduction operation that maps the n-particle problem into ef-

fective single particle-like problem. The main disadvantage is that the form of this mapping is not known

and one must resort to calibration against experimental data in order to find a good approximation for it.

The first such mapping was given by the Gross–Pitaevskii (GP) theory [5–7], which has been extensively

used in describing superfluid helium. However, at its best this theory can describe only the initial phonon

branch of the liquid dispersion relation and therefore it has no knowledge of peculiarities of the superfluid

helium, like the roton branch. Historically the GP theory points an important relation of the DFT models
to the classical fluid dynamics via the Madelung transformation [8]. This allows, for example, use of fluid

dynamical concepts in developing new functionals. Since the GP theory there has been significant advances

in developing new functionals, which can now reproduce many experimental observables of the bulk su-

perfluid liquid. These properties include bulk dispersion relation, pressure dependency of sound velocity,

and liquid compressibility. Although the present paper concentrates on the works of Dupont-Roc et al. [9]

and Stringari et al. [10], we also note that functionals with similar capabilities have been proposed, for

example, by Berloff [11]. In addition to describing bulk properties, these functionals have also been shown

to be able to model inhomogeneous liquid density profiles [12]. In contrast to QMC the DFT allows time-
dependent formulation and can therefore conveniently be applied in describing superfluid dynamics at 0 K

[13]. Furthermore, combined DFT and thermodynamic models have been developed that can provide

proper statistical picture of the thermal excitations [14] and thus extend the model to finite temperature

case.

Experiments carried out by physics and chemical physics communities have provided wealth of exper-

imental data regarding static and dynamic solvation of impurities in liquid helium. Examples of such

impurities are electrons [15–18] and various atoms and diatomic excimers [19–22]. The static solvation

structures surrounding the impurity can be classified as bubbles or snowballs depending on properties of
the impurity–He pair potential. The degree of liquid inhomogeneity depends naturally on the selected

impurity center and can range from almost a free surface to solid layers of helium. The present functionals

have shown excellent agreement with the known QMC and experimental data in the weakly inhomoge-

neous cases [10]. On the other hand in strongly inhomogeneous cases serious convergence problems of even

the most advanced DFT models have been observed [23]. In such cases hybrid QMC/DFT methods have

proven useful provided that a suitable dividing layer between the molecular complex and the liquid exists

[23]. However, much less is known about the cases where the impurity–He pair potential is anisotropic as

the high symmetry for the liquid is lost [12,23]. With respect to superfluid dynamics that considers liquid
flow, very few applications of DFT have been published, as the related experimental data is scarce [13,24].

Mainly two types of time resolved experiments have been carried out: measurement of drift velocities of

charged species [25] and pump–probe measurement of the quantum bath dynamics [26]. The first case has

been modeled, for example, by Berloff, where the electron drift and critical velocity phenomena were

evaluated by DFT [27]. In the latter case, the DFT calculations have been able to provide correct time scales

for the quantum bath dynamics [13,26].

It is clear from the above considerations that many systems include anisotropic interactions and

therefore it is of interest to develop a numerical DFT method that can describe the liquid in full 3-D using
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both time-independent and time-dependent formalisms. In these calculations computer execution time and

memory storage space become a major concern. From the numerical point of view we will utilize the

following methodologies: Fourier transform based evaluation of the nonlinear DFT potential and semi-

implicit Crank–Nicolson scheme in the position representation. The stability and parallel execution effi-

ciency of the method are demonstrated by using numerical simulations. These simulations include examples

of static solvation of atomic boron in superfluid helium, calculation of its optical 3s 2p transition in

liquid, and evaluation of the bulk liquid dispersion relation.
2. Density functional model

Liquid 4He can be described using DFT, by reducing the many-body problem to an effective single

particle Schr€odinger-like equation. The energy functional of Dupont–Roc et al. (DR), not including any

impurity–liquid interaction, is defined as follows [9]:
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where the screening distance h is 2.377 �A and model parameters c and c are 10,455,400 K �A3þ3 c and 2.8,

respectively. The Ul function assumes a Lennard–Jones interaction at long range, with parameters

� ¼ 10:22 K and r ¼ 2:556 �A, and screening at short range. The auxiliary function in Eq. (2) provides

spherical averaging for the liquid density. An extension of this functional has been proposed by Dalfovo,

Stringari et al. (SD) as follows [10]:
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where Ue
l corresponds to the Lennard–Jones pair potential ðr ¼ 2:556 �A and e ¼ 10:22 KÞ with com-

plete screening at short distances ðUe
l � 0 when jr � r0j6 h; h ¼ 2:1903 �A), c2 ¼ �2:411857� 104 K �A6,

c3 ¼ 1:858496� 106 K �A9, as ¼ 54:31 �A3, q0s ¼ 0:04 �A�3, and F ðrÞ is defined as Gaussian

(F ðrÞ ¼ p�3=2l�3 expð�r2=l2Þ with l ¼ 1 �A). ~q is defined as convolution of the density q with function F .
This functional has been applied, for example, to describe the static properties of He�2 excimer bubbles in

superfluid helium [12]. Improved behavior in dynamical applications can be expected from the functional of

Dalfovo et al. [10] (e.g., Eqs. (3) and (4)), which accounts for backflow (SD–BF):
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where velocity is defined through the probability current
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and Uj is expressed as
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and c11 ¼ �19:7544, c21 ¼ �0:2395, c12 ¼ 12:5616 �A�2, c22 ¼ 0:0312 �A�2, a1 ¼ 1:023 �A�2, and a2 ¼ 0:14912
�A�2. The following DFT calculations require functional derivatives for Eqs. (1), (3), and (4). For the first

energy expression, we get
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For Eq. (3), we get
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where the last two lines appear from the exact treatment of the non-local kinetic energy functional

(compare, for example, to [12]). For Eq. (4) the functional derivative can be obtained as
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This part of the effective potential has both real and imaginary terms, which act on both phase of the
wavefunction as well as its local amplitude in such a way that the total integral norm of the wavefunction is

conserved during time integration.

Stationary solutions (i.e., dE=dW� ¼ 0Þ for energy functional can be obtained via the self-consistent

treatment of the time-independent density functional equation:

dE
dw�
� lWðrÞ � � �h2

2MHe

DWðrÞ þ V ½qðrÞ�WðrÞ � lWðrÞ ¼ 0; ð10Þ

where E is given energy functional (e.g., DR; Eq. (1) or SD; Eq. (3)), V ½qðrÞ� is the corresponding effective

nonlinear potential that depends on liquid density q ¼ jWj2, and l is the chemical potential (average energy

per boson; �)7 K/atom). Instead of directly solving Eq. (10), we use an alternative approach that is based

on imaginary time propagation. This method is, for example, a key element in diffusion Monte Carlo. Thus

both time-dependent and independent results can be obtained by solving the time-dependent DFT equation
in real or imaginary time:

i�h
oWðr; tÞ

ot
¼ dE

dw�
� lwðr; tÞ ¼ � �h2

2MHe

DWðr; tÞ þ V ½Wðr; tÞ�Wðr; tÞ � lWðr; tÞ: ð11Þ

This equation results from the least action principle, which requires that W�ðr; tÞ is a stationary state
solution with respect to variations dW�ðr; tÞ. Subtraction of the chemical potential from the left side of Eq.

(11) merely removes a constant phase factor from the wavefunction. Eq. (11) is subject to periodic spatial

boundary conditions, which makes it compatible with the Fourier transform based evaluation of the ef-

fective potential. Finally, it should be noted that we are not implying any physical interpretation on the

‘‘wavefunction’’ W. It merely arises from a Madelung-type change of variables from S and q in [10] to a

complex valued W. Furthermore, it should be noted that in [28] S is given a meaning of phase instead of a

continuous variable, which allows description of quantitized vortices, for example.
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3. Numerical method

In the following we present implementation for a true three-dimensional DFT-based numerical method

that can describe both static and dynamic properties of superfluid 4He. To begin with, Eq. (11) can be

viewed in either momentum or position spaces. For the present implementation we have chosen the latter

representation. Spatial discretization of the wavefunction is then carried out using a regular Cartesian

rectangular grid in 3-D. In addition to its generality, it will allow efficient use of the fast Fourier transform

(FFT) method for evaluation of the nonlinear effective potential V . For time integration of Eq. (11), we will
apply the splitted operator scheme combined with a semi-implicit Crank–Nicolson method. The present

potential evaluation and time propagation schemes will bring the computational cost from OðN 6Þ down to

OðN 3 logNÞ, where N is the total number of grid points along each axis.

3.1. Evaluation of the nonlinear potential

Both Eqs. (7) and (8) contain convolution integrals between the liquid density and the screened Len-

nard–Jones potential. Since Eq. (11) is subject to periodic boundary conditions, it is natural to calculate the

integrals by using the fact that a convolution reduces to a local multiplication operation in the Fourier

space [29]. Thus calculation of such integral requires two forward FFTs and one backward FFT. As some

of the functions in convolutions do not change during the simulation, they need to be transformed only

once. Similar strategy can be used for the spherical average terms in Eqs. (7) and (8). The last three lines in
Eq. (8) originate from the non-local kinetic energy correlation term of Eq. (3). This term has been written in

such a from that the convolution theorem may be applied. Suitable choice of functions for convolution has

been indicated in Eq. (8) by functions H and G. The backflow functional derivative (Eq. (9)) also clearly

shows the proper convolution form. For efficient FFT library we have chosen the FFTW package, for

which a good parallel implementation using threads (e.g., shared memory computer) is available [30]. In the

present problem, the FFT step determines the overall computational cost of the method.

3.2. Time-space discretitzation of the DFT equations

The present DFT problem is essentially a time-dependent nonlinear Schr€odinger equation of the form:

i�h
owðr; tÞ

ot
¼ Hwðr; tÞ; ð12Þ

where H ¼ T þ V is the nonlinear DFT operator consisting of the kinetic and potential contributions (e.g.,
Eq. (11)). The formal solution for this equation can approximated by writing

wðr; t þ DtÞ � exp

�
� ði=�hÞ

Z tþDt

t
H ½wðr; t0Þ�dt0

�
wðr; tÞ � exp f � ði=�hÞH ½wðr; tÞ�Dtgwðr; tÞ: ð13Þ

The last equality holds exactly if the potential term of H is linear in w (e.g., time-independent). However, it

is still a good approximation when H is only mildly nonlinear. For both DR and SD functionals this
approximation works well whereas for SD–BF (cf. Eq. (4)) it fails due to instability produced by the

imaginary component present in the backflow potential. Later in the text the method will be extended to

reduce this instability. For now, we just directly apply the approximate propagator of Eq. (13). The po-

tential energy operator V in H is taken to be diagonal even though, it strictly speaking, contains off di-

agonals as the gradients of wavefunctions occur in the kinetic energy correlation term. This is a good

approximation since the main off diagonal contribution originates from the single particle kinetic energy.

The Laplacian in the single particle kinetic energy operator was discretized using the standard three-point
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finite difference stencil along each Cartesian axis. This gives second-order ðOðh2ÞÞ accurate approximation

for the spatial degrees of freedom. An extensive review of the finite difference methods applied to the

Schr€odinger-type problems has been given in [31]. The total energy operator is splitted into components

and written in symmetric form as follows (order of accuracy Dt3Þ:

wðr; t þ DtÞ � expf�ði=2ÞTxDt=�hg expf�ði=2ÞTyDt=�hg expf�ði=2ÞTzDt=�hg expf�iV ½wðr; tÞ�Dt=�hg
� expf�ði=2ÞTzDt=�hg expf�ði=2ÞTyDt=�hg expf�ði=2ÞTxDt=�hgwðr; tÞ; ð14Þ

where Tx, Ty , and Tz are the Cartesian components of the kinetic energy and V is the nonlinear potential. In

principle only Dt2 accuracy is required for present purposes and therefore it is not necessary to use the
symmetrized form in Eq. (14). For propagating each of the component operators ðOÞ over time Dt we use

the unitary Crank–Nicolson scheme (order of accuracy Dt2Þ [29]:

1

�
þ i

2�h
ODt

�
wðr; t þ DtÞ ¼ 1

�
� i

2�h
ODt

�
wðr; tÞ: ð15Þ

Thus overall both space and time are treated to the same order of accuracy (i.e., Dx2 and Dt2Þ. Propagation
of each cartesian component of the kinetic energy leads to a set of linear equations corresponding to a cyclic

tridiagonal matrix. Such equations can be solved efficiently by standard decomposition methods (e.g.,

Sherman–Morrison formula) [29]. In principle, the present problem could alternatively be formulated in the

momentum space, which would effectively reduce one FFT from the computation. For DR and SD

functionals the method allows sufficiently long time steps to be used, usually up to 80 fs. Parallelization of

the time integration scheme was implemented using OpenMP directives [32] on shared memory computer

(IBM pSeriers 690) using up to 32 processors.
As noted earlier, the backflow term of Eq. (4) is numerically unstable using the previously described

method. In order to avoid the problem, we have implemented predictor–corrector-type scheme for the

nonlinear potential of Eq. (14). For predicting step we use the previously described method with the po-

tential evaluated at time t (e.g., V ½wðr; tÞ�Þ and thus obtain an approximation for the nonlinear potential

V ½wðr; t þ DtÞ� at t þ Dt. The corrector step is then carried out using the same method but with the nonlinear

potential being average of the present and predicted potentials, Vcorr ¼ ðV ½wðr; tÞ�þ V ½wðr; t þ DtÞ�Þ=2. This
semi-implicit Crank–Nicolson method attempts to preserve the time reversal symmetry and makes the

overall time integration method for the SD–BF functional numerically sufficiently stable. With this ex-
tension, time steps up to 80 fs can be used in the SD–BF simulations. Recently, we have learned that the

present predict–correct approach is identical to the one that has been applied in solving the time-dependent

electronic Kohn–Sham equations [33]. However, in that case, the nonlinear potential is purely real valued

which makes the Kohn–Sham problem less demanding from the numerical point of view.
4. Numerical examples

In order to test the numerical method, we will concentrate on two test cases, which demonstrate both

real and imaginary time propagation of the DFT equations for homogeneous and inhomogeneous liquids.

First inhomogeneities are introduced by placing an atomic impurity, a boron atom in the present case, in

bulk liquid. This choice was based on the following criteria: the boron–helium potential is relatively weakly

bound (at most �20 K), which is suitable for the present DFT models (see [23] for further discussion on this

issue), the ground state boron–helium potential is anisotropic (cylindrical symmetry), and optical 3s 2p

absorption spectrum can be calculated using the time-dependent perturbation theory. For homoge-

neous liquids we will concentrate on evaluation of the known dispersion relations, which will provide clear
evidence for correctness of the present calculations.
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4.1. Static solvation of boron atom in superfluid helium

The interaction between boron atom and bulk helium is given by the following convolution:

EIM½w� ¼
Z

UIMð r
�� � r0

��Þqðr0Þd3r0; ð16Þ

where UIM is the pair potential between the boron atom and a single He (1S) atom. This pair potential was

obtained by ab initio coupled cluster with single, double, and perturbative triple substitutions (UCCSD(T))

method for the lowest 2R and 2P states whereas multi-reference configuration interaction (MRCI) calcu-

lation was used in obtaining the excited 2R state that correlates to excited atomic boron 1s22s23s1 config-

uration. In both calculations the augmented correlation consistent basis set aug-cc-pV5Z of Dunning et al.

was used [34–36]. The electron structure calculations were carried out using the Molpro-program suite [37].

For detailed description of the methodology used in the present calculations, see [38,39]. Results from the
calculations are shown in Fig. 1 where the three lowest states for B–He are plotted.

In the following we concentrate on imaginary time solution of Eqs. (3) and (8) (i.e., t! itÞ, where
contribution from Eq. (16) has been added. Since these calculations seek for the ground state solution, the

backflow energy of Eq. (9) will be zero. In each case the initial ‘‘wavefunction’’ was taken to correspond to

constant liquid density ðq0 ¼ 0:0218360 �A�3). For the present case sufficient imaginary time step was found

to be 10 fs. The atomic zero-point motion within the bubble as well as possible many-body effects in the

B–He potential have been ignored in the present calculations. Furthermore, it has been assumed that the

liquid will break the p-orbital frame degeneracy (e.g., crystal field splitting, see for example, [38]). This
process is expected to take place by any asymmetric motion of the liquid (e.g., thermal excitations) and

should therefore resemble situation encountered in the real experiments.

In Fig. 2 we show the calculated liquid ground state density around a ground state boron atom. As the

potential UIM has cylindrical symmetry, the obtained solution retains naturally the same symmetry. Due to

binding ð�20 K) in the diatomic 2P state, the liquid packs around the neck of the boron atomic p-orbital.

In Fig. 3 the liquid density distribution around the electronically excited state boron atom ð2SÞ is shown
Fig. 1. Pair potentials of B–He interaction for the lowest 2P state (X) and the two lowest 2R states (A,B) as obtained from the ab initio

calculations are shown. All the atomic asympotes have been adjusted to zero. Two of the lowest states correlate to ground state boron

atom whereas the second 2R (B) state correlates to 2S atomic asymptote.



Fig. 3. Superfluid ground state density around electronically excited boron atom (2S) is plotted. Overall the liquid retains spherical

symmetry corresponding to the symmetry of the boron–He pair potential. Liquid density obtained from the 1-D self-consistent field

method of Eloranta et al. [12] is also shown for reference. Parameters used in the calculation are identical to those in Fig. 2. The result

was obtained after 200 simulation steps.

Fig. 2. Superfluid ground state density around boron atom is shown along both axial (XY) and longitudinal directions (Z). A spatial grid

of 384� 384� 384 with 0.1 �A step was applied in the calculation. Time integration was executed for 500 iterations with 10 fs time step.
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along with results obtained from the 1-D self-consistent field method of [12]. In this case the bubble formed

in the liquid is spherically symmetric having approximate bubble radius of �6.5 �A.

Given the liquid ground state solution, it is now possible to calculate the atomic boron 3s 2p optical

absorption spectrum in liquid helium. A general recipe for calculating such spectrum IðxÞ in condensed
phase is based on the time-dependent perturbation theory [40,41]

IðxÞ /
Z 1

�1
eixtcðtÞdt; ð17Þ
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where cðtÞ is the time-correlation function, which is defined as:

cðtÞ ¼ wðiÞn eiHit=�hl̂e�iHf t=�hl̂
��� ���wðiÞnD E

; ð18Þ

where wn refers to nuclear wavefunctions, l to the electronic dipole transition operator, and Hi;f to the

nuclear Hamiltonians for the initial and the final states, respectively. Most of the spectral shifting and

broadening is caused by the low density He gas close to the atomic impurity and therefore the time cor-

relation function can be approximated using the Anderson�s formula [42]:

cðtÞ ¼ exp

	
�
Z
ð1� e�iDVfiðrÞt=�hÞqiðrÞd3r



; ð19Þ

where DVfi is the difference potential between the ground electronic and excited states and qi is the liquid

density in the electronic ground state. This method avoids explicit consideration of both electron and

nuclear dynamics in computation of cðtÞ. The calculated absorption spectrum is shown in Fig. 4. The
spectrum is strongly blue shifted and broadened as compared to the gas phase because the ground and

excited states have different symmetries.

4.2. Dispersion relations

By evaluating Eq. (11) in real time, it is possible to model dynamics in superfluid helium. A rigorous test

is to reproduce the known bulk dispersion relations with small amplitude excitations for the functionals of

Section 2. Such relation can be obtained conveniently by introducing a linear combination of plane waves

along some given axis with given momenta ðkiÞ on top of the ground state wavefunction:

wðr; 0Þ ¼ ffiffiffiffiffi
q0

p þ
XN
i¼1

ai eikix; where ki ¼
2pni
L

; ð20Þ

where constants ai were chosen to introduce small deviations from the ground state liquid (0.1% of

bulk density), L is the length of the simulation cube side, and ni are chosen to cover the desired range of
Fig. 4. Optical absorption spectrum of boron 3s 2p transition is shown. The spectrum was simulated using Eqs. (17)–(19). Line

broadening is completely due to electronic dephasing. The gas phase electronic origin for the transition is at ca. 40032 cm�1.



Fig. 5. Calculated dispersion relations for the following functionals: DR; Eq. (1), SD; Eq. (3), and SD–BF; Eqs. (3) and (4) are shown

along with the experimental data [1–3].
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momentum. Restrictions on the momenta ki are introduced by the periodicity requirement of w. After this

wavefunction has been propagated in real time (Eq. (11)) for sufficiently long period of time, which is

dictated by the corresponding wave energies, the corresponding frequencies xi can be obtained by ob-

serving the period of liquid density oscillations ðN ¼ 1Þ or via 2-D space-time Fourier transform of

w ðN P 1Þ. In the latter case it should be noted that the time axis is not periodic and therefore multiple

cycles for frequencies should be recorded in order to minimize noise in the dispersion contour. Results for

DR, SD, and SD–BF functionals along with reference data are shown in Fig. 5.
5. Stability tests and parallel scalability

Given the spatial step lengths ðDx ¼ Dy ¼ DzÞ of the simulation cube and the time step Dt, it is now of

interest to determine the relative accuracy of the method:

ErrðkÞ ¼ xk;calc � xk;exactj j
xk;exact

� 100%; ð21Þ

where k is the momentum of plane wave and x correspond to the calculated and exact angular frequencies.
In the following we have chosen waves from both phonon branch ðk ¼ 0:5 �A�1) and close to the roton

minimum ðk ¼ 1:9 �A�1), where backflow is important. Result for the latter case is shown in Fig. 6, where

nearly quadratic behavior with respect to the spatial step length is observed. The quadratic behavior for

rotons is consistent with the accuracy of the applied finite differencing scheme. In general, the relative error

for phonons appears to be an order of magnitude smaller than for rotons. Choice of time step appears to

have only small effect on the accuracy of the method (in terms of Eq. (21)) but it strongly determines the

overall stability of the method. If, for example, sub-nanosecond simulation length is desired then the time

step should be chosen to be less than 80 fs. If too large time steps are combined with long simulation times
then the amplitude of the excitation wave tends to grow significantly over time and the calculation will then

yield unphysical results.



Fig. 6. Relative error in energy (Eq. (21)) for a plane wave with k ¼ 1:9 �A�1 propagated with SD–BF (Eqs. (3) and (4)) is plotted as a

function of spatial grid step length (circles) along with a quadratic function (continuous line). The following spatial step size and grid

dimension combinations were used: 0.1 �A ðN ¼ 256Þ, 0.2 �A ðN ¼ 128Þ, and 0.4 �A ðN ¼ 64Þ.
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Efficient parallel execution was one of the primary goals when implementing the time integration

method. In order to show the scalability properties approximately, we have chosen to measure the efficiency

percentage obtained per one processor as a function of total number of processors ðnÞ participating in the

calculation:

EffðnÞ ¼ T1
Tn � n

� 100%; ð22Þ
Fig. 7. Parallel scalability of the method is shown for SD–BF functional (Eqs. (3) and (4)) with a 256� 256� 256 grid. Efficiency

obtained per one processor (Eq. (22)) is plotted against the number of CPUs participating in the calculation. Error bars indicate the

standard deviation in measured wall-clock times of different runs.
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where Tn is the total wall-clock time for one time step (excluding initialization phase) in the calculation

using n processors. Results of the parallel scalability runs are shown in Fig. 7 as a function of total number

of processors. Error bars in the graph indicate variation of the measured wall-clock time within different

runs. The reason for these time variations is that the computer used in the simulations was part of an active

cluster of computers with random workloads. For large grid sizes ðN � 256Þ the method scales very well up

to n ¼ 16 with efficiency per processor ca. 80%.
6. Conclusions

The presented numerical method can be used in modeling both static and dynamic phenomena in su-

perfluid helium. Due to favorable numerical behavior of the scheme, even long-time scale dynamics can
now be simulated without any geometry restrictions. However, memory requirements for storing the full

3-D spatial grid grow rapidly as the simulation cube is extended. With this respect the main restriction of

the present approach is that it relies heavily on evenly spaced spatial grid. For this reason, it is not possible,

for example, to simulate dynamics that involves long wavelength phonons in order of hundreds of �A. In

such cases the feasible ways to perform calculations are to exploit high symmetry (e.g. [13]), to use non-

uniform (adaptive) spatial grid, or to develop properly matched absorbing boundary conditions that can

even cope with the long wavelength phonons.
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